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self-consistent Kohn-Sham calculations 
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Laboratory of Physics. Helsinki University of Technology, 02150 Espoo, Finland 
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Abslrad The void formation energies in simple melals are calculated in the stabilized jellium 
model. The total energies of stabilized jeilium spheres mimicking small clusters of simple melals 
are determined The electronic smctures are solved in both cases selfsonsistenfly wilhin the 
local density approximation for elecuon exchange and conelation The planar surface energies 
and the curvature energies are extracted from the resulu. The stabilized jellium model is shown 
lo give a physically meaningful description of planar surfaces as well as surfaces with positive 
or negalive cunalure. The resulu for voids and clusters are discussed using Ihe so-called liquid 
drop model and its generalization. They are used lo estimate edge and step formalion energies. 

1. Introduction 

The jellium model, applicable to simple sp-bonded metals, has had an important role in the 
development of theoretical surface physics [ 1-31, It has also increased our understanding 
of &e properties of vacancies and voids in bulk crystals [a]. Recently, interest in surface 
physics has shifted to more complex structures such as steps or adatom or vacancy islands 
on surfaces (see [7] and references therein) and phenomena such as surface roughening 
(see [8] and references therein) or faceting of finite surfaces. The ability of the jellium 
model to provide insights into this kind of problem should be investigated. 

The simple jellium model has, however, the deficiency that jellium is stable only at one 
density. This is intrinsically related to the unphysical negative surface and void formation 
energies at high jellium densities [1,4]. This deficiency has been corrected from early 
works by re-introducing the ions using pseudopotentials and perturbation theory [ 1,6], 
or variationally [2,6]. Very recently, Perdew and co-workers [9], as well as Shore and 
Rose [IO], introduced the so-called ‘structureless pseudopotential’ or ‘stabilized jellium’ 
model, which rectifies the drawbacks of the jellium model in an attractively simple manner. 

The stabilized jellium model has been shown to reproduce quite reasonably the surface 
energies of the simple metals [9-1 I]. The model has also been applied to void formation 
energies by Fiolhais and Perdew [I21 and by Perdew and co-workers [13]. It is shown in 
these works that the model gives reasonable values for the vacancy formation energies for 
alkali metals and for AI. However, the calculation by Perdew and co-workers [I31 is not 
based on self-consistent electron structure calculations for spherical voids, but on a Pad6 
approximation linking the small- and large-void radius regions. The large-void radius limit 
is treated in the liquid drop model [ 141, in which the parameters are the surface energy and 

t Permanent address: Many-Body Problems Group, Po Box 410113, D-01224 Dresden. Federal Republic of 
Germany. 
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the so-called curvature energy. For the small-void radius limit Perdew and co-workers use 
perturbation and linear response theory, giving the expansion coefficients rigorously for the 
vanishing void radius. 

The purpose of this work is to calculate self-consistently the electronic structures and 
total energies of voids in the stabilized jellium model. We use density functional theory 
within the local density approximation (LDA) for electron exchange and correlation [I51 and 
solve numerically the ensuing KohnSham equations. The self-consistent void formation 
energies obtained put the conclusions by Perdew and co-workers [I31 on a firmer basis. 
Moreover, we extend the calculations to stabilized jellium spheres mimicking metal atom 
clusters. Previous self-consistent approaches [ 161 have used the unstabilized jellium and 
therefore the surface contribution to the total energy is unreliable. In this work we show 
the feasibility of using the stabilized jellium model for the surface energy of clusters. The 
comparison of the total energies of these spheres with the liquid drop model predictions is 
also interesting, due to the fact that the curvatures are now positive. 

In this work we obtain self-consistent values for the coefficients of the liquid drop 
model and for the Pad6 approximation. These coefficients, for example the planar surface 
energy and the curvature energy, are needed in estimating the energies of complex surface 
structures. As an application we consider the formation energy of a step on the Al(11 I )  
surface. 

The organization of this paper is as follows. In section 2 we describe the practical 
features of the stabilized jellium model important for our applications. In section 3 the 
results for void and cluster surface energies are presented and discussed. Section 4 contains 
the application to the step on the Al(11 I )  surface and section 5 is devoted to conclusions. 

2. Model 

In the stabilized jellium model, the spherical positive background profiles for voids (n;) 
and spheres (nC,) are 

(1) n;(r) = AO(r - R) 

and 

where ii = 3/(4nr:) is the equilibrium bulk valence electron density, -B(r) is the usual 
Heaviside step function, and R is the radius of the void or the jellium sphere. In these and 
following equations atomic units @ / m e 2  = ag and me4/h2) are used for the length and the 
energy, respectively. We consider only neutral jellium spheres, so that the electron number 
47rR3r? must be an integer and the possible sphere radii for a given density A are limited 
to certain values. For voids in jellium the sphere radius can be a continuous quantity due 
to the infinite extent of the system. 

The stabilization correction adds to the effective potentials for voids (V&) and spheres 
(V&) h e  terms 
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where E = is the bulk energy per particle in a homogeneous electron gas, containing 
kinetic energy (to = &k; = 4(3n2i )2 /3)  and exchange and correlation energy (4 
contributions. 

The positive background charge distribution and the stabilization correction determine 
the KohnSham equations to be solved. For simplicity, we use spherical electron densities 
and the spin-independent LDA formalism (with identical spin-up and spindown occupancies) 
for all spheres with open electron shells (while in [I71 self-consistent calculations of small 
stabilized-jellium spheres are based on the local spin-density formalism). 

The density-functional total energy for a void can be used to calculate the void formation 
energy E;. The equation needed in practice is the same as in the jellium model given in [61. 
We define the void surface energy per unit area U; as 

We also calculate the total energy E;  for a stabilized jellium sphere and then define the 
surface energy U: per unit area for a sphere as 

E; - (4n/3)R3ii(< + A<) 
U; = 

4n RZ 

Above, the term subtracted from the total energy is the bulk energy of stabilized jellium 
corresponding to the volume of the sphere with radius R; A6 = - ; ( ~ ~ / ~ / r $ )  - ii de/& is 
the stabilization correction of the bulk energy, and z is the number of valence electrons per 
atom. For the details about the stabilization correction see 191. 

3. Void and cluster surface energies 

First we consider voids and stabilized jellium spheres with R = ro = z'prs,  i.e. the Wigner- 
Seitz radius. Thereby we obtain the monovacancy formation energies ETo = 431r;u; and 
the cohesive energies 4nr02uk: this model the cohesive energy is the energy per sphere 
needed to split the infinite stabilized jellium into non-interacting Wigner-Seitz spheres. This 
energy is the total surface energy of one WignerSeitz sphere, and it is determined in this 
work by a self-consistent calculation for an isolated stabilized jellium sphere. Perdew and 
co-workers [I41 showed, using the semiempirical liquid drop model, that this surface energy 
explains the cohesive energies of monovalent metals. 

The results for vacancy formation energies and cohesive energies corresponding to the 
r, and L parameters for several simple metals are collected in table 1 and compared with 
experimental values. The agreement is surprisingly good for the monovalent alkali metals 
and also quite fair for the trivalent Al. The calculated vacancy formation energies for the 
divalent earth-alkaline metals are reasonable in comparison with the available experimental 
values, but the calculated cohesive energies are too small. This reflects the fact that stabilized 
jellium spheres with two electrons have a very stable closed shell structure with a relatively 
low total energy, which leads to a small surface energy. The real earth-alkaline metal atoms 
also have closed shell structures, but in the atoms the valence electron states have to be 
orthogonal against the core electrons. This decreases the stability of the free atoms and 
shifts valence charge out of the core region to the bond region of the metal. Both of these 
effects increase the cohesive energy of the real metal relative to our model. It is interesting 
to note that the semiempirical liquid drop model of Perdew and co-workers [ 141 gives, due 
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to the absence of the shell effects, cohesive energies that are much too large for divalent 
metals. The vacancy formation energies and the cohesive energies calculated in the Pad6 
approximation [ 13,19,20] are also shown in table 1. The vacancy formation energies are 
in a good agreement with our self-consistent values, whereas for the cohesive energy the 
discrepancies are larger. 

Table 1. Monovacancy formation energies and cohesive energies per atom. 4nr$7;6 and 
47rr&3F0 are the present lheoretical values, whereas E L  (taken by [SI) and EcOh 1181 are lhe 
corresponding experimental values. The resulu of the Pad6 approximation [13,19,20] are shown 
in parentheses. All energies are in eV. 

~~~ 

Metal (z.rs) 

Li ( I .  3.24) 
Na (1, 3.93) 
K ( I ,  4.86) 
Rb ( I ,  5.20) 
Cs (I, 5.62) 
Zn (2.2.30) 
Mg (2 2.65) 
Ca (2, 3.27) 
Sr (2. 3.57) 
Ba (2. 3.71) 
AI (3. 2.07) 
Pb (4. 2.30) 

4nr;u; 

0.37(0.37) 
0.34 (0.33) 
0.29(0.28) 
0.27(0.27) 
0.26 (024) 
0.74(0.77) 
0.75(0.76) 
0.70(0.69) 
0.67(0.66) 
0.65(0.64) 
I .02(1.06) 
1.37U.39) 

E L  - 
0.37 
0.41 
0.39 
0.27 
0.28 

0.84 
0.54 

- 

- 
- 
0.67 
0.52 

4xr& 

1.50(1.03) 
1.19(0.82) 
0.89(0.66) 
0.82(0.59) 
0.74(0.54) 
1.19(2.18) 
1.16(1.87) 
1.04(1.51) 
0.98(1.36) 
0.95(1.30) 
3.96(3.02) 
4.57(3.16) 

Emh 

1.63 
1.11 
0.93 
0.85 

- 

0.80 
1.35 
1.51 
1.84 
1.72 
1.90 
3.39 
2.03 

Table 2. Planar surface energy U (meVa;*) and curvature energy y (meva;') according 
to [I31 and I l l ]  and figure I .  The resulfs of 1131 arise from Ihe approach of [12L 

fr Y 

Metal (rs) Reference [I31 Reference [Ill Present work Reference 1131 Present work 

AI (2.07) 16.19 16.17 16.15 49.8 44.5 
Na (3.93) 3.13 3.15' 3.14 9.84 9.54 
Cs (5.62) 1.03 1.05 1.055 3.67 3.84 

a Recalculated for is = 3.93 from the value 3.01 given in [I 11 for r, = 3.99, 

The void surface energies per unit area corresponding to the valence electron densities 
in AI, Na, and Cs are shown in figure 1 as a function of the inverse of the void radius. The 
circles denote the results of the self-consistent calculations and the straight lines correspond 
to the two first terms of the large-R fit 

u"(R) = U  - - Y t O(l/R2).  
2R (7) 

Above, U and y are the planar surface energy and the curvature energy, respectively. Note 
that we use here the argument R in parenthesis instead of the subscript R to distinguish the 
continuously fitted functions from the discrete calculated data. In the equations below this 
convention is also used for N denoting the number of vacanciej or atoms. In the liquid 
drop model 1141 only the first two terms of the expansion are considered. The values of the 
parameters U and y obtained in this work for Al. Na, and Cs are given in table 2. There 
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the planar surface energies U are compared with self-consistent results [ I  1,131 obtained 
using a computer code for the semi-infinite stabilized jellium. Our extrapolations (figure 1) 
are in good agreement with these. The small differences are probably of numerical origin. 
The present self-consistent curvature energies y are also compared with the results obtained 
in [I31 by employing the fourth-order gradient expansion for the kinetic energy [12]. Due 
to the different approaches used in the present work and in [12,13] the values for y are 
somewhat different and this difference changes sign when the density of the stabilized 
jellium decreases. 

E 

8.0 0.2 0.4 0.6 0.8 1.0 

rdR 
Figure 1. Void surface energy 0; against rolR for rg = 2.99 (AI), 3.93 (Na) and 5.62 (a). The 
full circles denote the results of the self-consistent calculations and the straight lines conespond 
to linear large-R fits. The open circles carrespond to monovacancies. 

1% (aB) 

Figure 2. Surface energies of monovacancies. planar surfaces and single *atoms' of stabilized 
jellium. The open and full circles cormpond lo experimental vacancy formation 161 and cohesive 
[IS] enagies, respectively. The open squares are the experimental planar surface energies of 
molten alkali metals extrapolated to zen temperature [21]. 
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Figure 2 shows the surface energies per unit area for the planar surface, for the z = 
1 monovacancy, and a single ‘atom’ (the sphere with R = ro) of stabilized jellium as a 
function of the density parameter r,. The curves are compared with experimental points for 
vacancy formation? and cohesive energies [ 181 of alkali metals. Moreover, the experimental 
planar surface energies [21] of molten alkali metals extrapolated to zero temperature are 
also shown. Note that U; < U < U;, reflecting the change of the curvature energy from 
positive to negative when the surface changes from convex to concave. For a real lattice 
this means that the number of broken bonds decreases. The theoretical and experimental 
vacancy formation and cohesive energies are in good agreement, but the theoretical planar 
surface energy curve lies remarkably below the experimental values. This discrepancy has 
been explained to arise mainly from the increase of the surface energy due to atomic scale 
corrugations [9,1 I]. 

We note from figure 2 that the planar surface energy curve is closer to the curve 
corresponding to the vacancy formation energy than that for the cohesive energy, i.e. 
(U; + u;) /2  z U.  This means that extracting a sphere with radius ro from stabilized 
jellium and leaving a hole behind costs, in addition to the energy due to the increased 
surface area, a curvature contribution of 4nr:(u& +U;  - 2u) > 0. 

Our data for the larger voids and spheres can be analysed in terms of the void binding 
energy per vacancy and the cluster binding energy per atom. Thus, we consider a spherical 
vacancy cluster of radius R N  = N113r0 and having formation energy 4 r R i u & ,  to arise 
from N single monovacancies each having the formation energy 4nr&~;. The void binding 
energy per vacancy is then 

This quantity vanishes by definition for N = 1 ( R I  = ro). For N -+ 03 it approaches 
-431rOzu;. the negative of the vacancy formation energy, because at this limit U& -+ U 

and R $ / N  + 0. Similarly. we define the cluster binding energy per atom as 

The latter equality is due to the cancellation of the bulk energy terms, as in the case of the 
cohesive energy above. The cluster binding energy also vanishes for N = l ,  and for N + 03 

it approaches -4~rr$$~, the negative of the cohesive energy. 
The void binding energy per vacancy and the cluster binding energy per atom for 

stabilized jellium with rs = 3.93 (Na) are plotted in figure 3 as a function of N - ’ ” .  In the 
figure the vacancy formation energy and the cohesive energy are found from the vertical axis 
on the left. We show results for all clusters between N = l  and N = 20 and thereafter only 
for closed shell clusters up to N = 306. The full squares and circles correspond to open 
and closed shell clusters, respectively. The cluster data show oscillations as a consequence 
of the shell structure, but their relative importance in the total binding energy decreases 
when the cluster size increases. 

The broken and full curves in figure 3 are based on the different fits to the void data. 
For example, if we use the liquid drop model, i.e. equation (7). the void binding energy 
per vacancy in (8) becomes 

t The experimenlal data for vacancy formation energies are taken from [6]. 
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K'* 

Figure 3. Void binding energy per vacancy (A; in (8)) and cluster binding energy per 
'atom' (Ah in (9)) in lhe stabilized jellium model. N is the number of vacancies or 'atoms'. 
respeclively. Open circles correspond lo voids. Full circles and squares refer m closed shell 
and open shell spheres, respectively. The broken tines are obtained with terms up to the planar 
surface energy in ( I O )  and ( I I ) ,  whereas for the broken curves the curvature contributions are 
included. l k  full curves correspond to the generalized lquid dmp model of (13). 

The corresponding cluster binding energy per atom is then obtained by using the cohesive 
energy instead of the vacancy formation energy and changing the sign of the curvature (or 
the curvature energy), i.e. 

The broken curves in figure 3 are obtained using these equations whereas the broken lines 
correspond to the first two terms, the vacancy formation energy or the cohesive energy 
and the surface energy. Firstly, we see that the cluster data approach the straight line at 
the largest cluster sizes calculated, the slope of which is determined by the planar surface 
energy U. Secondly, the liquid drop model of (IO) is quite accurate for the voids. Even in 
the case of a monovacancy it causes an error of only about 10%. On the other hand, when 
applied for clusters the relative deviation from the exact results for a given N is larger than 
in the case of voids. If the liquid drop model of (IO) is used to estimate the cohesive energy 
4 1 1 r ~ u ~ .  the error is about 30%. 

It is possible to improve the simple liquid drop model of (7) by using more fitting 
parameters. For example, one can extend (7) to 

+ o ( I / R ~ )  Y 6 u V ( R )  = U - - + - 
2 R  4zR2 

(the extended liquid drop model). The determination of the parameter 6 is numerically 
much more difficult than that of the parameters U and y .  According to our estimations 
6 is about 9, -45 and -40meV for AI, Na and Cs, respectively. The physical meaning 
of 6 is that it describes the interactions between the different parts of the curved surface. 
Because 6 changes sign between AI and Na, this interaction seems to have a different type 
of character for the high and low electron density systems. If a term corresponding to the 
third term on the right-hand side of (12) is added to the cluster binding energy per atom in 
( I  I )  the changes are very small. 
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In the generalized liquid drop model proposed in [13] the void surface energy is given 
by the Pad6 approximation as 

The corresponding approximation oC(R) for the cluster surface energy is then obtained by 
analytic continuation, i.e. by making the substitution R + -R. We have used the above 
form with the values of U and B I  = y / 2 u  (table 2) obtained by the large-R fits and then 
used all the data up to monovacancies to determine 8 2  and B3. The values of the parameters 
for B I ,  BZ and are given in table 3 for AI, Na and Cs. The values for Bz and B3 differ 
remarkably from those in 1131. It is evident that the differences in B2 and B3 largely cancel 
in the calculation of the void surface energies. The full curves in figure 3 correspond to 
the generalized liquid drop model. The approximation joins smoothly the void results and 
in the case of clusters it predicts the cohesive energy obtained from the calculation for the 
WignerSeitz sphere to within 10%. In the case of Cs the generalized liquid drop model 
with the present parameters also predicts the cohesive energy well, but for AI the agreement 
is less satisfactory. This may be partly due to the insufficient accuracy with which we can 
obtain the BZ and B3 parameters in fitting the void energies. 

Table 3. Paramean of the Pad6 fib (13) to the calculated void surface energies. The resulu 
of [I31 are shown in parentheses 

Metal 81 (ad 8 2  (08) 8 3  (a3 
AI 1.38 (1.54) 2.09 (1.39) 2.14 (1.09) 
Na 1.52 (1.57) 3.11 (4.42) 13.77 (8.88) 
cs 1.82 (1.78) 1.98 (7.06) 43.83 (2555) 

4. Edges and steps on surfaces 

As an application of our results we discuss the total energy characteristics of edges and 
steps on otherwise planar surfaces using the generalized liquid drop model similarly to [ 131. 
The formation energy of an edge is the difference between the total surface energy for a 
surface with the edge and the energy of the planar surface with equal area. The former 
can be calculated using the local curvature R-l = i('R;' +%-I), where RI and 'Rz are 
the principal curvature radii. We define the curvature-dependent surface energy u(R) for 
the positive and negative curvatures with the help of the cluster and void surface energies, 
respectively: 

U(R) = UC(R) 

u(R) = o"(-R) 

R > 0 

R < 0. 

The edge formation energy is then J'dAu(R). We apply this first to a quarter space of 
stabilized jellium with a 90" edge and rounding radius r .  The principal curvature radii 
are r and 00 and therefore R-' = fr-I. As a consequence, the formation energy of a 
rounded 90" edge per unit length is irrru(2r). Correspondingly, the formation energy of 
the complementary 270" edge is $rrru(-2r). Then, ijrr Io(2r) +a(->) - 2al is the 
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curvature contribution to the cleavage energy of the bulk stabilized jellium into a quarter 
space and a three quarter space jellia with rounded edges. 

A step on a surface is formed by a 90" edge and a 27W edge. The step formation 
energy per unit length is then 

[ (x  - 4)r + h]u + i r r  [u(2r) + u(-Zr) - Zu] (16) 

where h is the height of the step. The first term in (16) is due to the increase of the surface 
area and the second term is a curvature correction. As an example, we consider a monolayer 
step on the Al(111) surface. Its height h = a/-&, where a is the FCC lattice constant. Then, 
using the maximum rounding r = h/2  (i ro) and the data from table 3, the step formation 
energy per unit length is 40meVui'. In this case the curvature correction is less than 
1 meVa;'. On the other hand  if we use for u(2r) the value of 26meVn;' (instead of 
21 meVa,') estimated from the self-consistent calculations for stabilized jellium spheres 
with N = 3..  .lo, the resulting step energy is 57meVa;'. These two estimates bracket 
the result of 45 meVai' obtained by Scheffler and co-workers [7] with first-principles 
calculations (using a lattice constant corresponding tor, slightly smaller than the 2.07 used 
here). 

5. Conclusions 

In conclusion, we have determined the formation energies of voids in stabilized jellium by 
calculating the self-consistent electron structures. The values of the planar surface energies 
and the curvature energies are obtained. Moreover, we have calculated the electronic 
structures and total energies of stabilized jellium spheres, mimicking small simple metal 
atom clusters. In this work we have considered different analytic expansions for the surface 
energies of spherical voids and clusters and determined the expansion coefficients. In 
principle, it is possible to extend the theory beyond the spherical shape in order to have a 
more realistic description of specific vacancy agglomerates or atomic clusters with facets, 
edges and comers. Also in these cases, analogously to the spherical case, the basis would 
be expansions in terms of characteristic dimensions of the void or the cluster, with well 
defined expansion coefficients. 

In this work we have shown by self-consistent calculations that the stabilized jellium 
model gives physically meaningful results for the energetics of planar surfaces as well as of 
negatively or positively curved surfaces. In the case of alkali metals even the quantitative 
agreement with experiments is good. The generalized liquid drop model explains void 
formation energy data and it gives, apart from effects due to shell structure, a reasonable 
description for the total energies of small metal clusters. 

Finally, our application to the formation energy of a step on the Al(111) surface 
demonstrates that simple models based on the stabilized jellium picture can provide insight 
into the structural properties of real surfaces. 

Acknowledgments 

We are grateful to J P Perdew for suggesting this study and for many helpful discussions, and 
M Scheffler for providing us with unpublished results. One of the authors (E) would like to 
thank the Laboratory of Physics at the Helsinki University of Technology and the Research 
Institute for Theoretical Physics at the University of Helsinki for their kind hospitality. 



9058 P Ziesche et al 

References 

Lang N D and Kohn W 1970 Phys. Rev. B 1 4555 
Monnier R and Perdew J P 1978 Phy.~. Rev. B 17 2595 
h g  N D 1983 Theory a f t k  Inhomogeneous Elccrron Cas ed S Lundqvist and N H March (New York 

Manninen M, Nieminen R M, Haulojmi P and Arponen J 1975 Phys. Rev. B 12 4012 
Nieminen R M 1978 J .  Nucl. Mater.  69/70 633 
Manninen M and Nieminen R M 1978 J .  Phys. F: Met. Phys. 8 2243 
Schemer M. Neugebauer J and Stumpf R 1993 J .  Phys.: Condenr. Matter 5 5A A914  
H W n e n  H. Merikoski I, Manninen M. TImonen J and Kaski K 1993 Phys. Rev. Lett. 70 2451 
Perdew J P, Tran H Q and Smith E D 1990 Phys. Rev. B 42 I1627 
Shore H B and Rose J H 1991 Phys. Rev. k i f .  66 2519 
Kiejna A 1993 Phys. Rev. B 47 7361 
Fiolhais C and Perdew J P 1992 Phys. Rev. B 45 6207 
Perdew J P, Ziesche P and Fiolhais C 1993 Phys. Rev. B 47 IM60 
Perdew J P. Wang Y and Engel E 1991 Phys. Rev. Lerr. 66 508 
Makov 0 and N i m  A 1993 Phys. Rev. B 47 2301 
Perdew J P and Wang Y 1992 Phys. Rev. B 46 12947 
Hinlerman A and Manninen M 1983 Phys. Rev. B 27 7262 
Ekardt W 1984 Phys. Rev. B 29 1558 
Beck D E 1984 SolidStote Commun. 49 381 
Brajczewska M. Fiolhais C and Perdew J P 1993 Int. 1. Quamum Chem. S. submitted 
Kitlel C 1976 lnirnrluction to SolidSlote Physics 5th edn (New York Wiley) 
Ziesche P, Perdew J P and Fiolhais C 1993 unpublished 
Perdew J P 1993 privale communication 
Tyson W R and Miller W A 1977 Surf Sci. 67. 267 

Plenum) p 309 


